
Question � Mark�

Why would this map of the Melbourne rail network be considered an abstraction �choose the most correct answer�?

�a� The map provides a broad aerial view of the city rail network

No � while this may encode additional information this is not an abstraction

�b�With respect to the context the map suppresses less important details � such as the names of roads

Correct � less important details are suppressed and it is therefore an abstraction Replacing the actual locations of the rail

lines with simplified / less accurate lines in order to emphasise each line's important aspects is another example

�c� The map shows not only the relative location of the stations but also the connectivity of the rail network

No � these characteristics are not related to abstraction only to a rail network

�d� The map provides additional information an aerial photograph wouldn't provide by indicating where rail lines intersect with

each other

No � while this may provide additional information this is not an abstraction

Question � Mark�

With respect to the concept of abstraction which of the following statements is not true?

�a� A city rail map is an abstraction of the city's rail system

True � a city rail map suppresses the unnecessary details / complexity of the real rail system

�b� A model airplane is an abstraction of the plane it represents

True � a model airplane suppresses the unnecessary details / complexity around the actual plane � focusing only on it's

appearance

�c� A city skyscraper is an abstraction of the building's floor plan

False

A city skyscraper is not a version of it's floor plan with certain details suppressed for a given context However conversely

it could be said that the building's floor plan is an abstraction of the building itself

�d� A mathematical function describing only the height of a bouncing ball is an abstraction of the ball's bouncing motion

True � a mathematical function modelling the bouncing ball suppresses the unnecessary details / complexity of the ball

bouncing �eg how it might reflect light effects of friction etc�

Abstraction Name�

 /

Question � Marks�

Outline two ways in which an operating system hides the complexity of the hardware from users and applications

Award �� mark for identifying a method of OS abstraction

Award �� mark for an expansion on the first identified method

Award �� mark for identifying a second method of OS abstraction

Award �� mark for an expansion on the second identified method

FOR EXAMPLE�

OS’ provide a Graphical User Interface �GUI� for hiding the complexity of hardware functions

For example dragging a file into a folder abstracts a series of complex hardware actions controlled by low level binary

commands which moves / remaps storage locations

OS’ provide a Command Line Interface �CLI� for hiding the complexity of hardware functions

For example renaming a file using a rename command abstracts a series of complex hardware actions controlled by low

level binary commands which check for illegal characters and store individual characters in a standard binary format

such as ASCII or UNICODE

OS’ provide drive letter / label representations for hiding the complexity of hardware allocations

For example simply labelling a new drive partition on secondary storage with a name / letter abstracts the complex

process of allocating a new storage section and restricting access to that section to only authorised users

OS’ provide applications with a set of services to access hardware functionality without having to know details about the

hardware itself

For example the OS could expose a "take photograph” function which takes a photograph from the device camera The

application doesn’t need to know the details around the type of camera or the set of steps to establish permissions to use

the camera � the complexity is hidden / abstracted so that it is easier for the application developer to create software to

work on the OS

Abstraction Name�

 /

Question � Marks�

Outline two benefits of high level languages over low level languages such as Assembly

Award �� mark for identifying a valid benefit

Award �� mark for a valid and distinct and related expansion / elaboration related to the identified benefit

Award �� mark for identifying a second valid benefit

Award �� mark for a valid and distinct expansion / elaboration related to the identified benefit

For example�

ABSTRACTION�

High level languages provide a higher level of abstraction than machine languages

which in turn improves MAINTAINABILITY / EXTENSIBILITY / REUSABILITY / TESTABILITY etc

PRODUCTIVITY / EASE OF USE�

High level languages are typically more programmer friendly

which better supports productivity and makes code generally easier to read / write / develop etc

PORTABILITY�

Higher level languages are machine independent

which means that the same code can be written to work across different machine architectures and / or operating

systems

LEARNABILITY�

Higher level language abstractions can help to support learning new programming languages

by supporting programmers with more human readable syntax as well as more intuitive / relatable semantics

TROUBLESHOOTING�

Higher level languages are easier to debug / find errors

owing to helpful higher level abstractions which help programmers analyse / trace / reason about the code

and catch syntax or logical errors at compile and / or runtime

SECURITY�

Higher level languages support better security

by distancing / restricting programmers from powerful low level functions which may be more effectively misused to

exploit hidden / fundamental system vulnerabilities

Abstraction Name�

 /

